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and a small fraction of the least volatile is present in the distillate.
That the two quantities will then differ little in weight and therefore
the deviation from the law is comparatively small, is not strange in
my opiniou.

I think to have shown in this way, that Youna’s rule is a proof
of the excellent way in which Youne’s still heads work, but that
from a point of view of quantitative analysis we must only take
this rule as an application of the most obvious operation, viz that of
separating a substance in pure stafe from a mixture and then weighing
it separately.

Lhysical Lab. of the University. Amsterdain.
Physies. — < Electromagnetic phenomena in a system moving with

any celocily smaller than that of light”” By Prot. H. A. LorunTa.

§ 1. The problem of determining the influence exerted on electric
and optical phenomena by a translation, such as all systems have in
virtue of the Eartl’s annual motion, admits of a comparatively
simple solution, so long as ouly those terms need be {aken into
account, which ave proportional to the first power of the ratio
between  the  veloeity ef translation w and the velocity of light e.

w?

Cases in which guantities of the second order, i.e. of the order —

e’
may  be pereeptible, present wore difficulties.  The first example of
this kind is  Miensrsox’s well known  interference-experiment, the
negative  result of which has led Firz Gerarp and myself (o the
conclusion that the dimensions of solid bodies are slightly altered
by their motion through the aether.

Some new experiments in which a second order effect was sought
for have recently - been  published.  Ravimien ') and Brack ?) have
examined the cquestion whether the Earth’s motion may cause a
body to become doubly  refracting: at first sight this might be
expected, if the just mentioned change of dimensions is admitted.
Both physicists have however come to a negalive result.

In the second place Trovrox and Nosre ®) have endeavoured to
detect a turning couple acting on a charged condenser, whose plates
make a ceriain angle with the divection of translation. The theory

) Raveergu, Phill Mag. (6) 4 (1902), p. 678,

2) Brace, Phil. Mag. (6) 7 (1904), p. 317.

") Trouvros and Noepre, London Roy. Soc. Trans. A 202 (1903), p. 165.
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of electrons, unless it he modified by some new hypothesis, would
undoubtedly require the existence of such a couple. In order to
see this, it will suffice to consider a condenser with aether as
dielectricuim. It may be shown that in every electrostatic system,
moving with a velocity w '), there is a certain amount of “ecleciro-
magnetic momentum”. If we represent this, in direction and magni-
tude, by a vector &, the couple in question will be determined by
the vector product ?)
[&.w] . . . . . . .
Now, it the axis of z is chosen perpendicular to the condenser
plates, the velocity w having any direction we like, and if 77 is
the energy of the condenser, calculated in the ordinary way, the
components of & are given®) by the following formulae, which are
exact up to the first order:

. 20 . 2U0 R
&, = o Wy, @)y prscnen —Z;— Wy, G — 0.

Substituting these values in (1), we get for the components of
the couple, up to terms of the second order,

20 20 ‘
— Wy Wy — — 0, W, 0.
(52 . > 62 ?

These expressions show that the axis of the couple lies in the
plane of the plates, perpendicular to the translation. If e is the angle
between the velocity and the norwmal to the plates, the moment of the

-

U ) T \ .
couple will be — 2 sin 2a; it tends to turn the condenser into such
G

& position that the plates are parallel to the Earth’s motion.

In the apparatus of Trovrox and NosLr the condenser was
fixed to the bheam of a torsion-balance, sufficiently delicate to be
detlected by a couple of the above order of magnitude. No effect
could however be ohserved.

§ 2. The experiments of which I have spoken are not the only
reason for which a new examination of the problems connected
with  the motion of the Earth is desirable. Poixcarg ) has objected

) A vector will be denoted by a German letter, its magnitude by the corre-
sponding Latin letter. 4 «

%) See my article: Weiterbildung der MaxweLt’schen Theorie. Electronentheorie
- in the Mathem. Encyclopiidie V 14, § 21, a. (This arlicle will be quoted as M. E.)
) M. E. § 56, c.

%) Pomvcarg, Rapports du Congrés de physique de 1900, Paris, 1, p- 22, 23.
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to the existing theory of elec{ric and optical phenomena in moving
bodies that, in order toexplain MicheLsox’s negative result, the
imtroduction of a new hypothesis has been required, and that the
Same necessity may oceur each tine new facels will be brought to light.-
Surely, this course of inventing special hypotheses for each new expe-
rimental vesult is somewhat artificial, It would be more satisfactory,
it it were possible (o show, by means of cerfain fundamental assumptions,
and without neglecting terms of one order of magnitude or another,
that many electromagnetic actions are entirely independent of the
motion of the system. Some Yyears ago, I have already sought to
frame a theory of t(his kind ‘). I believe now to be able to treat
the subject with a better result. The only restriction as regards the
veloeity will be that it be smaller than that of light.

$ 3. I shall start from the fundamental equations of the theory
of clectrons ®). Let b he the dielectric displacement in the aether,
b the wmagnetic force, ¢ the volume-density of the charge of an
electron, v the velocity of a point of such a particle, and f the
electrie force, i.e. the force, reckoned per unit charge, which is
exerted by the  aether on a volume-element of an electron. Then,
i we use a tixed system of coordinates,

divd=19 , divh—0,"

N

f—10b -+ ”11;_ [v. b

I shall now suppose that (he system as a whole moves in the
divection of .+ with a constant velocity w, and I shall denote bij u
any velocity a point of an electron may have in addition to this,
s0 that

Ve = 10 1ty vy = Uy, L, == u..

I[f the equations (2) are at the same time referred to axes moving
with the system, they become

) Lonexvz, Zittingsverslag Akad. v. Wet,, 7 (1899, p. 507; Amsterdam Proe.,
IRO8 04, p. 427,

9 M E, § 2
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div b = g, divh = 0,
00~ 09, 1 /0 0 1 '
= bl — 0 (w0 i, ),
6.7/ 0z ¢ (()f a ar) + e (” —l— )
09 0bh. 1 79 0 1
— — = — D, — Ly s
z. O ¢ 0t " al) Y + ¢ 0ty
o, 0y 1 o 1
— . - f— \ P > 9
o oy (af e e
. 9, 1 a
dy B (- TR Vs
00, 0d. . 1 a (
0= o . e\ “oa)

l

od,  dY, 1 a a 5

do oy T(Eﬁw N 6&:) o
1

fo = b. + - (“_1/ b. — u, I)‘1/ )

| 1 1
by — _.z}_ W I)a’ —-l— —‘— (Uz [,)d, — U, b;’ )')

I

fe = . +—~—tv(sJ—l— (ug,[)l——-u‘/{)i).

§ 4. We shall further transform these formulae by a change of

variables. Putting

62

e N )|

&% ——qp?
and understanding by / another humerical guantity, to be deter-
mined further on, I take as new independent variables

/

d=rkla , y':::[?/ v 2=l . . L L L (4)
4
t’___zt-—ﬂl S e e e (B)
and I deﬁne two new vectors d and ' by lhe formulae

, 1 , k W , W0
b a - ‘z‘;" b.’l' L) b ‘1/ == 72—" b.]/ e ’L._‘ ():0 [} b » —_ e (\ + —_ b(/ )
1 k 20 k w
by = ) b I)’g/ = ) (by + " D, )a b = 'F" b — " oy )s

for which, on account of (3), we may also write

4 , 2 f w ' 10 '
¢ I '

.. (6)

1
be =00, by = & (b'y — ", ) e = &2 (b'z + 2o, )S
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As to the coefficient [, it is to be considered as a function of w,
whose value is 1 for w — 0, and which, for small values of w0, differs
from unity no more than by an amount of the second order.

The variable # may be called the ““local time” ; indeed, for £ =1,
=1 it becomes identical with what I have formerly understood by
this name. :

If, finally, we put

1 '
e Q=0 .- . . .« . . . . . (7)
Buy —u, ki, =u',, ku, =y ,. . . . (8)

these latter quantities being considered as the components of a new
vector ', the equations take the following form :

. Wiy .
div' ' = 1 — —w—-rf) o', div' ) = 0,

et /7
1 /od
rot' [yl — —\ 35 -+ o' u’), N )
1 9p'
rot' bl - "-c'*—“a‘“t"",

i

1 W
f&- - Z2 bl_'r + lﬂ » T (ll’:]/ [),z — lt’z b’]/) + Zﬂ . 'é‘; (ll’y bly + ll’z b,z),
c

12 21 , ’ w
fy = T 'y iy (Web'e — v ) — ki u'y o'y, - . (10)
e 13 1 o Vo * e D
— W] e - »— 1 [y, ——~“’~-"'U;:b:-
fz = 7 b 2 “‘} 7 . (ll &x I,‘,/ ! /A -‘) k e 1 /

The meaning of the symbols div’ and rot’ in (9) is similar to that

of div and rot in (2): only, the differentations with respect to @, ¥y, z
: - vy . ) /

arce to be replaced by the corresponding ones with respect to @, Yy, 2.

§ 5. The equations (9) lead to the conclusion that the vectors
b and D' may be represented by means of a scalar potential ¢' and
a vector pofential o'. These potentials satisfy the equations D

1 d%¢’ ,
Algl—— o= —0% « . . . . . (1]
1 0%a’ 1
Vol e e ... .. 12
L' a R ; Q (12)

* ' ape v e A% v
and in terms of them d and b’ are given Dby

Iy M. E,, 88 4 and 10.
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1 da’ W0
V= — — PV grad' @' 4 — grad' a'sy . . . . (18)
¢ ¢

b =wrot"a'. . . . . - (1)
0* 0* 0? ,
The symbol 4' is an abbreviation for S -4~ 5 - FyrE and grad' ¢
dg' dep' Og' ,
denotes a vector whose components are —, —, —. The expression
Ox'" Oy’ " 0z
grad' o', has a similar meaning.

In order to obtain the solution of (L1) and (12) in a simple form,
we may take o',y 2 as the coordinates of a point /' in a space
S, and ascribe to this point, for each value of ¢, the values of
o v, ¢’y a', belonging to the corresponding point P (e, y, 2) of the
electromagnetic system. For a definite value # of the fourth mdependent
variable, the potentials ¢’ and o' in the point /° of the system or in
the corresponding point 2 of the space S, are given by 1)

1 !
o= (e (15)

4 7

1 (lo'v]
- ——=dS'.. ... ... 6
= 2 (16)

Here 5 is an element of the space S', /7 its distance from 7
and the brackets serve to denote the quantity ¢’ and the vector
1]
7!

o’ w’, such as they are in the element S’, for the value # — — of
. ¢

the fourth independent variable.
Instead of (15) and (16) we may also write, taking into account

(4) and (7),

: 1 (lel
= — —— (l S’ . - . . . - e
*==J . (17
, 1 (leu]
o = 4wa —aS, . . . . ... s

the integrations now extending over the electromagnetic system itself.
It should be kept in mind that in these formulac does not denote
the distance between the element S and the point (¢, y, z) for which
the calcilation is to Le performed. If the element lies at the point
(@1, ¥, 21), we must take

= I/_z;”‘(.:u—:nl)” —+ (v —u)? -+ (,3’——-,31)2.

It is also to be remembered that, it we wish to determine ¢’ and

) M. E., 8§ 5 and 10,
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a’ for the instant, at which the local time in P is ¢, we must take
¢ and g v/, such as they are in the element @S at the instant at

!
]

which the local time of that element is # — —
¢

§ 6. It will suffice for our purpose to consider two special cases,
The first is that of an  electrostatic system, 1, e. a system having
no other motion but the (ranslation witl the velocity w. In this case
W =40, and therefore, by (12), @/ = 0. Also, ¢’ is independent of ¢/,
s0 that the equations (11), (13) and (14 reduce {o

Y '
L' = — o,

.
-
.

! U : ' . (19)
0 =— — grad ¢ ' = 0, ‘

After having determined the veetor d by means of these equations,
we  know  also the electric force acting on electrons that belong to
the system. For these the formulae (10) hecome, since u’ =0,

fom B30, f, — L b ="y 20
P =Wy e =20 L L (20)

The result may be put in a simple form if we compaué the moving
system X with  which we are concerned, to another electrostatic
system =" which remains at rest and into which X ig changed, if
the dimensions parallel to the axis of » are multiplied by #/, and
the dimensions which have the direction of y or that of z, by /,
a deformation for which (#/,/, [) is an appropriaie symbol. In this
new system, which we may suppose to he placed in the ahove
mentioned  space .S, we shall give to the density the value ¢,
determined by (7), so that the charges of corresponding clements of
volume and of corresponding electrons are the same iy 2 and XV,
Then we shall obtain the forces acting on the electrons of the moving
system 2 0f we first determine the corresponding forces in X7, and

next multiply their components in the direction of the axis ot .« hy
2

7, and  their componenis perpendicular {o that axis by = This s

conveniently expressed by the formula

lﬂ lg N ;
’S(E):—_-(z*, “A-,’"x;i)“‘“)' e

It is further to be remarvked that, after having found " by (19,
we can casily caleulate the eleciromagnetic momentum in the moving
system, or rather ifs component in ihe direction of the motion,
Indeed, the formula
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1
@5:—-f[b.b]d8
[4

1 .
@5.‘1‘ == ”f(b.?/ b;‘.‘ - b;’ b?/) (1 S
¢

Therefore, by (6), since ) = 0
kA klw , g
G = e | 0 + 0 d S ==, f () F o) d 8. L (22

c? (

shows that

§ 7. Our second special case is that of a particle having an elec-

tric moment, i. e. a small space S, with a total charge J;) d8=0,
but with such a distribution of density, that the integra.lsj o dS,

f ouyds, f 0 2d S have values differing from O,

Let X, ¥,z be the coordinates, taken relatively to a fixed poini .1
of the particle, which may be called its centre, and let the electric
moment be defined as a vector p whose components are

px:fgde, p.,/::f()y(ZS, Pz:—"—JQZCZS- - . (28)
Then |

d v, dp dyps ) .
o :fg N, d S, -cl;/ :f@ uy d S, i oudS . (24

Of course, if X, y, z are treated as infinitely small, e, Uy, U INust
be so likewise. We shall neglect squares and products of these six
(uantities. ,

We shall now apply the equation (17) to the determination of
the scalar potential ¢’ for an exterior point 2 (2, ¥, 2), at finite distance
from the, polarized particle, and for the instant at which the local
time of this point has some definite value #. In doing so, we shall
give the symbol [¢], which, in (17), relates to the instant at which

1

3

- . < 3 9 - . ] . Ty ¢ . - -
the local time in d S'is #'——, a slightly different meaning. Distinguishing
p _

by ', the value of »' for the centre ., we shall understand by (@]
the value of the density existing in the element S at the point
!
. » i . 2 - 7"
Xy ¥, 2), at the instant £, at which the local time of A is ¢'——".
. C
It may be seen from (5) that this instant precedes that for which
we have to take the numerator in (17 by
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20 Y Ry w O o'
e X A e e = Y — —— —
T + { . ( + Y5, oy +z 0z

unifs  of time. In this last expression we may put for the differen-
tial coefficients their values at the point .
In (17) we have now to replace [¢] by

o 0 P
l01+/~"~X[m +53( o +y~—i )[ ] . @5)

Q . :
where l}é;] relates again to the time ¢,. Now, the value of 2 for

which the calculations are to be performed having been chosen, this
time ¢, will be a function of the coordinates w, y, z of the exterior
point /2. The value of [o] will therefore depend on these coordinates

in such a way that
Mol & 13 [ -
| o L ¢ o [ :I’ ot
by which (25) becomes
[o] + LJ w [ :’ ( a[@] agj{] + zagZ]
Again, if hencef01t11 we undemtand by +' what has above been

1
called +';, the factor = must be replaced by

—xa(3)-v5() - 7))

so that after all in the integral (17), the element ¢ S is multiplied by
LQ] 4o jfx [00] J XI91 d Y[&ﬂ 0 zle]

'

O oy o 0z

- This is snnp]er than the prumtlve form, because neither »’, nor
the time for which the quantities enclosed in brackets are to e

taken, depend on ., y, z. Using (23) and remembering that f odS=0

we get
10 Py 1 (alw o[ 0 [y:]
gt ] ALy Sl SR
4 qp e | O 4 (D o 7! 0z
a formula in which all the enclosed quzmtltles are to be taken for
the instant at which the local time of the centre of the particle is

i

! 7
th— |
We shall conclude these caleulations by introducing a new vector
v, whose components are
54

Proceedings Royal Acad, Amsterdam. Vol VI
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Pe==kilp,, Py =1Ip,, PVe=1Ip:, . . . . (26)
passing at the same time to 4,7/, 2, # as independent variables. The
final result is
. 0 a[p,v]_ 1 __a__[p,w.]_l_ a[¥7/1+ a[pr 1
P =Taer o 4 (02 oy’ o 9z
As to t-hé. formula (18) for the vector potential, its transformation
is less complicate, because it contains the infinitely small vector u'.
Having regard to (8), (24), (26) and (5), I find ‘
‘ 1 o[y'] ‘
, dmer 0t ,
The field produced by the polarized particle is now whol]y deter-
mined. - The formula- (13) leads to

O L0 R grad a[w]_*_afvu]_‘+~ KBRS Y yPrs
4dmetot® o 4 o' oy’ 0z 7'

and the vector ' is given by (14). We may further use the equations

(20), instead of the original formulae (10}, if wé wish to consider

the forces exerted by the polarized particle on a similar one placed

at some distance. Indeed, in the second particle, as well as in the

first, the wvelocities u may be held to be infinitely small.

It is to be remarked that the formulae for a system without
translation are implied in what precedes. For such a system the
quantities withh accents become identical* to the corresponding ones
without accents; also ‘4 =71 and /=1. The comporents of (27) are
at -the same tlme those of the electric force which is exerted by one

polarized particle on another.

!

a4 —

7

§ 8. Thus far we have only used the fundamental equations
~ without any new assumptions. I shall now suppose that the electrons,
cwhich I take to be spheres of radius R in the state of rest, have
their dimensions changed by the effect of a translation, the dimensions
i the direction of motion becoming k1 times and those in perpen-
dicular directions 1 times smaller.

. . - | 1 11

In -this deformation, which may Dbe represented by (_7;2, L -—Z—-),,
-each element of volume is understood to preserve its charge.

Our assumption amounts {o saying that in an electrostatic system
2, moving with a velocity v, all electrons are flatlened ellipsoids
with their smaller axes in the direction of motion. If now, in order
to apply the theorem of § 6, we subject the system to the defor-
mation (47,7, /), we shall have again spherical electrons of radius 72,
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Hence, if we alter the relative position of the centres of the electrons
in = by applying the deformation (£/, /, /), and if, in the points
thus obtained, we place the centres of electrons that remain at rest,
we  shall get a system, identical to the imaginary system =7 of
which we have spoken in § 6. The forces in this system and those
in X will bear to each other the relation expressed by (21).

In the second place 1 shall suppose that the forces between unchar-
ged particles, as well as those hetween such pavticles and electrons, are
influenced by« translation in quite the same way as the electric forces
i an electrostatic system. In other terms, whatever be the nature of
the particles composing a ponderable body, so long as they do not
move relatively to. each other, we shall have between the forces
acting in a system (=') without, and the same system (=) with a
translation, the velation specified in (21), if, as regards the relative
position of the particles, ="' is got from =X by the deformation (£/, [, {),

_ . : 1 1 1
or X from = by the detormation (ﬁ’ 7 7).

We see by this that, as _Sébnas the resulting force is O for a
particle in X', the same must be true for the corresponding particle
in X. Consequently, if, neglecting the effects of molecular motion,
we suppose each particle of a solid body to be in equilibrium under
the action of the attractions and repulsions exerted by its neighbours,
and: if we take for granted that there is but one configuration of
equilibrivm, we may draw the conclusion that the system =7, if the
velocity w is imparted to it, will of itself change into the system

—

. In other terms, the translation will produce the deformation

1 1 1
\x'1 )

The case of molecular motion will be considered in § 12.

It will ecasily be seen that the hypothesis that has formerly been
made in connexion with MicHBLSON’s experiment, is implied in what
has now been said. However, the present hypothesis is more general
because the only limitation imposed on the motion is that its velocity’
be smaller than that of light. '

§ 9. We are now in a position to calenlate the electromagnetic
momentum of a single electron. For simplicity’'s sake I shall suppose
the charge ¢ to be uniformly distributed over the surface, so long
as  the clectron remains at vest. Then, a distribution of the same
Tind will exist in the system X' with which we are concerned in
the last integral of (22). Hence

| B4
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.

r3 ! 2 5’2 dsS' e wdr ¢
Jo vvay=g ey = [ T=g"0
R

and
2

]

- & [ 0.
. 6e®* R '
It must be observed that the product &/ is a function of » and
that, for reasons of symmetry, the vecior & has the direction of the
translation. In general, representing by w the velocity of this motion,

we have the vector equation

62
@ _— - k Z ‘D - - L] . . . ' u . 28
6 we? R (28)
Now, every change in the motion of a system will entail a cor-
responding change in the electromagnetic momentum and will there-
fore require a certain force, which is given in direction and mag-
nitude by

d®
| B=—n o -« . . .. (29)

Strictly speaking, the formula (28) may only be applied in the
case of a uniform rectilinear translation. On account of this circum-
stance — though (29) is always true — the theory of rapidly varying
motions of an electron becomes very complicated, the more so, because
the hypothesis of § 8 would imply that the direction and amount of
the deformation are continually changing. It is even hardly probable
that the form of the electron will be determined solely by the
velocity existing at the moment considered.

Nevertheless, provided the changes in the state of motion be suf-
ficiently slow, we shall get a satisfactory approximation by wsing (28)
at every instant. The application of (29) to such a quast-stationary
translation, as it has been called by Asramam?), is a very simple
matter. Let, at a certain instant, j, be the acceleration in the direction
of the path, and j, the acceleration perpendicular {o it. Then the force
§ will consist of two components, having the directions of these acce-
lerations and which are given by

S =m, |, and §, = My g
if
e dklw) e? ‘
_— Sttt dom and M, = 6”0—;]7% EL . . v (30)
Hence, in phenomena in which there is an acceleration in the

m

) Apraman, Wied. Ann, 10 (1903), p. 103,
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direction of motion, the electron behaves as if it had Q. mass 4, in
those in which the acceleration is normal to the path, as if the
mass were m,. These quantities my and m, may therefore properly
be called the “longitudinal” and “transverse” electromagnetic masses
of the electron. I shall suppose that there is no. other, no “tpye or
“material”’ mass. ' |

2

R Lo . . v w
Since £ and / differ from unity by quantities of the order —, we
c o

find for very small velocities

82

’)'ﬂl = 7’)1.2 T

et R

This is the mass with whiclh we are concerned, if there are small
vibratory motions of the electrons in a system without {ranslation.
If, on the contrary, motions of this kind are going on in a body
moving with the velocity w in the direction af the axis of 2, we
shall have to reckon with the mass m,, as given by (30), if we con-
sider the vibrations parallel to that axis, and with the mass My, if
we lreat of those that are parallel to O or OZ. Therefore, .in
short terms, referring by the index = to a moving system and by
=" 10 one that remains at rest, R

d (k1 w)

m(E,‘):::v77,/{![,&&)771,(2"'). soe e e (3

§ 10. We can now proceed to examine the influence of the Barth’s
motion on optical phenomena in a system of transparent bodies. In
discussing this problem we shall fix our attention on the variable
electric moments in the particles or “atoms”’ of the system. To these
moments we may apply what has been said in § 7. For the sake
of simplicity we shall suppose that, in each particle, the charge is
concentrated in a certain number of separate electrons, and that the
“clastic” forces that act on one of these and, conjointly with the
electric forces, determine itg motion, have their ovigin within the
bounds of the same atom. R

I shall show that, if we start from any given state of motion iu
a system without translation, we may deduce from it a corresponding
stale that can exist in the same system after a translation has been
imparted to it, the kind of correspondence being as specified in
what follows. ,

a. Let A4',, 4',, A, etc. be the centres of the particles  in
the system without translation (X'); neglecting molecular motions
we shall take these points to remain at rest.  The system of points.
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A, 4, 4, cte., formed by the centres of the particles in.the moving

system X, is obtained from A',, A',, A',, ele: by means-of a deformatiorn
11 1
A

will of themselves take these positions A';," A',, 4, ete. if originally,

before there was a translation, they occupied the positions A, .1,, A, ete.

We may conceive any point [’ in the space of the system 2" 1o
be deplaced by the above deformation, so that a definife point /” of
= corresponds to it. For two corresponding points 22 and P we shall
define corresponding instants, the one belonging to /”, the other to
P, Dby stating that the trne time at the first instant is equal to the
local time, as determined by (5) for the point 72 at the second instant.
By corresponding times for two corresponding  particles we shall
understand times that may be said to correspond, if we fix our
attention on the centies A’ and 4 of these particles.

b. As regards the interior state of the atoms, we ghall assume that
the configuration of a particle 4 in = at a certain time may be
derived by means of the deformation (%[,
guration of the corresponding particle in XV, such as it is at the
corresponding instant. In so far as this assumption relates to the form
of the electrons themselves, it is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the system
2', we have now completely defined a state of the moving system X
The question 'reinains however,  whether this state will likewise be
a ‘possible one. R et '

In order to judge this, we may remark in the first place that
the electric moments whicli we have supposed to-exist in the moving
system and which "we shall denote hy" p, will be certain definite
functions of the -coordinates x, v, z of the centres A of ihe particles,
or, as we -shall say, of the coordinates of the particles themselves,
and of the time ¢. The equations which expiess the rélations between
p-on one hand and @, y, 'z, £ on the other, may be replaced by other
equations, containing the vectors p’ defined by (26) and the quantities
&'y’ 2"t defined by (4) and (5). Now, by the above assumptions
a and b, if in a particle ‘4 of the moving systemi, whose coordinates
are @, y, z, we find an electric moment p at the time t, or at the
local time ¢#’, the vector p’ given by (26) will be" the moment whieh
exists in the other system at the true time # in a particle whose
coordinates are a’, ', z’.:It appears in this way- that the equations
between p’, «/, y’, 2’5 ¢ are the same for Both systems, the diffe-
tence . being only this, that' for (he system =/ without translation

). According to what has been said in § 8, the centres

o1y .
T T from the confi-
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these symbols indicate the moment, the coordinates and the frue time,
whereas their meaning is different for the moving system, p’, &/, y/, =/, ¢
being here related to the moment p, the coordinates «, y, z and the
general time ¢ in the manner expressed by (26), (4) and (5).

It has already been stated that the equation (27) applies-to-both
systems. The vector d’ will therefore he the same in =/ and =
provided we always compare corresponding places and itimes. How-
ever, this vector has not the same meaning in the two cases. In =/
it represents the electric force, in = it is related to this force in
the way expressed Dby (20). We may therefore conclude that the
electrie forces acting, in = and in =, on corresponding particles at
corresponding instants, bear {o each other the relation determined by
(21). In virtue of our asswmption 5, taken in connexion with the second
hypothesis of § 8, the same relation will exist between the ‘“elastie”
forces ; consequently, the formula (21) may also Dbe regarded as
indicating the relation between the total forces, actmﬂ on corresponding
electrons, at corresponding instants. .

[t is clear that the state we bhave. Hupposed to exwt in the moving
system  will really be possible if, in 2 and X', the products of the
mass e and the acceleration of an eleciron are to each other in the
same relation as the forces, i e. if

‘ m;(x)___.(l‘2 — w) m}(\’) N 220!
Now, we have for the acceleratlon.s ‘
l l .
() = ]c" T ;( ), Coe e e (33)

as may be deduced from (4) and (5), and combinihg this with (32),
we find for the masses
m (Z) == (&%, kl, k) m (=)

If this is compared to (81), it appears that, whatever be the Value
of 7, the condition is always satisfled, as vegards the magses with’
which we have to reckon when we . consider. vibrations perpeu-
dicular to the traunslation. The only condition we have to nnpose on
! is therefore

d( ko) L |
: dw e
But, on account of (3), o
d(icw)‘;w,/ﬂn
die 7 o

so that we must pul
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dl
The value of the constant must be unity, because we know already
that, for w =10,1=1. ,
- We are therefore led to suppose that the mfluence of a translation
on the dimensions (of the separate electrons and of a ponderadle body
as a whole) is confined to those that have the direction of the motion,
these -becoming k times smaller than they are in the state of rest. If
this ‘hypothesis is added to those we have already made, we may be
sure that two states, the one in the moving system, the other in the
same system. while at rest, corresponding as stated above, may both be
possible. Moreover, this correspondence is not limited to the eclectrie
moments of the particles. In corresponding points that are situated
either in the aether between the particles, or in thatsurrounding the
ponderable Dbodies, we shall find at corresponding times the same
vector ®’ and, as .is easily shown, the same vector H/. We may sum
up by saying: If, in the system without translation, there is a state
of motion in which, at a definite place, the components of p, d and
h are certain functions of the time, then the same system after it
has been put in motion (and thereby deformed) can be the seat of
a state of motion in which, at the corresponding place, the com-
ponents of p’, d and ¥’ are the same functions of the local time.
There is one point which requires further consideration. The values
of the masses m, and m, having been deduced from the theory of
quasi-stationary motion, the question arises, whether we are Jjustified
in reckoning with them in the case of the rapid vibrations of light.
Now it is found on closer examination that the motion of an electron
may be treated as quasi-stationary if it changes very little during
the time a light-wave takes to travel over a distance ‘equal to the
diameter. This condition is fulfilled in optical phenomena, because
the diameter of an electron is extremely small in comparison with
the wave-length. ’ o

= 0, [ = coust.

§ 11. It is easily seen that the proposed theory can account for a
large number of facts. ‘ R . |

Let us take in the first place the case of a system without trans-
lation, in some parts of which we have continually p = 0, d» — 0,
b6 =0. Then, in the corresponding state for the moving system, we
shall have in corresponding parts (or, as we may say, in the same
parts of the deformed system) p' = 0,v' = ), b'=0. These equations
implying v =0, ¥==0, ) =0, as i& Seen by (26) and (6), it appears
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that those parts which are dark while the system is at rest, will remain
$0 after it has been put in motion. It will (herefore be impossible
to detect an influence of the Earth’s motion on any optical experi-
ment, made with a terrestrial source of light, in which the geome-
trical distribution of light and darkness is observed. Many experi-
ments on interference and diffraction belong to this eclass. o

In the second place, if in two points of a system, rays of light
of the same siate of polarization are propagated in the same direction,
the ratio between the amplitudes in these points may be shown not,
to be altered by a translation. The latter remark applies to those.
experiments in which the intensities in adjacent parts of the field
of view are compared. _ ‘

The above conclusions confirm the vesults I have formerly obtained.
by a similar train of reasoning, in which however the terms of the
sccond order were neglected. They also contain an explanation of
MicHELSON's negative result, more genecral and of somewhat different
form than the one previously given, and they show why Rayruren
and  Brace could find no signs of double refraction produced by
the motion of the Harth. | : o

As to the experiments of Trouron and NosLw, their negative result
becomes at once clear, if we admit the hypotheses of §8, It may be
inferred from these and from our last assumption (§10) that the only
elfect of the translation must have been a contraction of the whole
system of electrons and other particles conslituting the charged
condenser and the beam and thread of the torsion-balance. Such a
contraction does not give rise to a sensible change of direction.

It need hardly be said that the present theory is put forward with
all due reserve. Though it seems to me that it can account for all
well established facts, it leads to some consequences that cannot as
yet be put to the test of experiment. One of these is that the result
of MICHELSON’s experiment must remain negative, if the. interfering
rays of light are made to. .travel through some ponderable transparent
body. . R
Our assumption about the contraction of the electrons cannot in
itself be pronounced to be either plausible or inadmissible. What
we  know about the nature of electrons is very little and the only
means of pushing our way farther will be to test such lypotheses
as 1 have here made. Of course, there will be difficulties, e.g. as soon,
as we come to consider the rotation of electrons. Perhaps we shall
have to suppose that in those phenomena in which, if there.ls no
translation, spherical electrons rotate about a diameter, the points of
the clectrons in the wmoving system will describe elliptic paths,
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corresponding, in the manner specified in § 10, to the cirenlar paths
described in the other case. |

§ 12, It remains to say some words about molecular motion. We
may conceive that bodies in which this has a sensible influence or
even -predominates, undergo the same deformation as the systems of
particles of constant relative position of which alone we have spoken
till now. Indeed, in two systems of molecules =' and X, the first
without and the second with a translation, we may imagine molecular
motions corresponding to cach other in such a way that, if a particle
in 3 has a certain position at a definite instant, a particle in
occupies at the corresponding instant the corresponding position. This
being assumed, we may use the relation (33) between the accclera-
tions in all those cases in which the velocity of molecular motion
1s very small as compared to w. In these cases the molecular forces
may be taken to be determined by the relative positions, indepen-
dently of the velocities of molecular motion. If, finally, we suppose
these forces to be limited 1o such small distances that, for particles
acting on each other, the difference of local times may be neglected,
one of the particles, together with those which lie in its sphere of
attraction or repulsion, will form a system which undergoes the
often mentioned deformation. In virtue of the second hypothesis
of § 8 we may therefore apply to the resulting molecular force’
acting on a particle, the equation (21). Consequently, the proper
relation between the forces and the accelerations will exist in the two
cases, if we suppose that the masses of wll particles are inflrenced
by a translation to the same degree as the electromagnetic masses of
the electrons. |

§ 13. The values (30) which I have found for the longitudinal and.
transverse masses of an ‘electron, expressed in terms of its velocity, are
not the same as those that have been formerly obtained by ABrAHAM.
The ground for this difference is solely (o be sought in the circums-
stance that, in his theory, the electrons are treated as spheres of
invariable dimensions. Now, as regards the transverse mass, the
results of ABrRaHAM have been confirmed in a most remarkable way
by KAvurmany’s measurements of the deflexion of radinm-rays in
electric and magnetic fields. Therefore, if there is not to be a most
serious objection to the theory I have now proposed, it must bhe
possible to show that those measurements agree with my values
nearly as well as with those of ABramam. | B
~ I'shall begin by discussing ftwo of the series of measurements’
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published by Kavramans ') in 1902. From each series he has deduced

two quantities 4 and &, the “reduced” clectric and magnetic deﬂ(,‘clons
W

which are related as follows to the ratio B =—:
¢

a5 |
B=h=, v@= ?E -7,
Here w (3) is such a function, that the transverse mass is given by
3 % |
My == i Py @@, . .. L. (35)

whereas £, ank &, are constant in each series.

It appears from the second of the formulae (30) that my theory
leads likewise to an equation of the form (35); only ABraHAM’S
function ¢ () must be veplaced by

i k= i 1 — 62)_..1/2.
3 3

Hence, iy theory vequires that, if we substitute this value for
P (8) in (34), these equations shall still hold. Of course, in seeking
to obtain a good agreement, we shall be justified in giving to £, and %,
other values than those of Kavrmann, and in taking for every measure-
ment a proper value of the velocity w, or of the ratio 8. Writing

.

sk, 1 k'3 and @' for the new values, we may put (34) in the form

ﬁ’::slclg. N 611
N -
and
O~ =
]

KavrMaNx has tested his equations by choosing for £, such a value
that, calculating g and £, by means of (34), he got values for this
latter number that remained constant in each series as well as might
be. This constancy was the proof of a sufficient agreement.

I have followed a similar method, using however some of the
numbers calculated by KaAvrMmany. I héwe computed for each measure—i
ment the value of the expression

=1 5%bwﬁﬂwu.. N G
that may be got from (3 7) combined with the second of fhe equations
(34). The values of Yy (8) and £, have been taken from KAUFMANN'S
tables and for 3 I have subqtltuted the value he has found for @)
nmlllphed ln s, the latter coefficient being chosen with a, view to

s e e e (3T)

.1) IxAUFMANN, Physik. Zeitsehr. 4 (1902), p. 55.
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| obtaining a good constancy of (38). The results are contained in the
following tables, corresponding to the tables I1l and IV in Kavrmann’s
paper.

HI. s = 0933,

B SR 7123 B R 7 B Jeo!
0.851 2147 1.7 0.79% 2.246
0.766 1.86 1.736 0.715 9 .958
0.727 1.78 - 1.7925 0.678 2.956
0.6615 | 1.66 1.7217 0.617 2.256
0.6075 | 1.595 | 1.655 0.567 2.475

g ] LB ‘ Ky B Feg!

., 0.963 3.23 8 12 0.919 10.36
0.949 9.86 7.99 0.905 9.70
0.933 | 2.73 746 0.890 9.98
10.883 2.31 8.39 0.842 | 10.36
0.860 2.195 8.09 0.820 10.15
0.830 | 9.06 843 | 0.702 10.23
0.801 1.96 |. 8.3 0.764 10,98
0.777 1.89 8,04 0.741 10.20
0.752 1.83 8.02 0.717 10.22
0.732 1.785 7.97 0.608 10.48

The constancy of %', is seen to come out no less bﬂ:tlﬁfachl‘y than
that of %,, the more so as in each case the value of s has been
determined by means of only two measurements. The coefficient has
been so chosen that for these two observations, which were in Table
IIT the first and the last but one, and in Table IV the first and the
last, the values of /bg should be proportional to those of Z,.

I shall next consider two series from a later publication by K AUFMANN ),
which have been calcalated by Ruxer?) by means of the method of

1) Kaurmany, Gott. Nachr, Math., phys. KL, 1903, p. 90.
*) Rusak, ibidem, p. 326.
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least squares, the coefficients %, and k, having been determined in
such a way, that the values of 1, calculated, for each observed g&,
from Kavrmann’s equations (34), agree as closely as may be with
the observed values of 1. .

1 have determined by the same condition, likewise using the method
of least squares, the constants @ and 5 in the formula

n® = a&® -} bg*,
which may be deduced from my equations (36) and (37). Knowing
a and 0, I find B for each measurement by means of the relation

B=—Va %

For two plates on which Kavrmany had measured the electric and
magnetic detlexions, the results are as follows, the deflexions being
given in centimeters.

I have not found time for caleulating the other tables in KAUFMANN'S
paper. As they begin, like the table for Plate 15, with a rather
large negative difference between the values of % which have been
deduced from the observations and calculated by Ruxer, we may
expect a satisfactory agreement with my formulae.

§ 14. I take this opportunity for mentioning an experiment that

Plate N° 15. a = 0,06489, &b = 0,3039.

R ———

n B

§ ) Calculated . |Calculated i Calculated by
Observed. (by R. Diff, by L. Diff, R, L

0.1495 0.0388 0. 0404 — 16 | 0.0400 — 12 | 0.987 | 0.951
0.199 0.0548 00550 | — 2] 0.032° ] — 4 0.964 | 0.018
0.2475 0.0716 0.0740 | - 6| 0.0715 4 1 0.930 | 0.88l
0.296 0.0896 0.0887 4 9 o0.0805 | 4 4 0.889 | 0.842
0.3435 0.-1080 0.1081 — 1| 0.1090 — 10 | 0847 | 0.803
0.391 0.1290 0.1297 — 7] 0.1305 — 15 0.804 | 0.763
0.437 0.152%4 | 0.1527 — 3| 0.1532 — 8 0.763 | 0.727
0. 4825 0.1788 0.1777 411 | 04777 4 11 0.724 | 0.692
0.5565 0.2033 0.2039 — 6| 0.2033 0 0.688 | 0.660
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Plate N°. 19. a = 0,05867, b =—0,2591.

M - o 3

J Observed, |Caleulated | .. [Caleulated | pop Calculated by

by R. _‘by L. . R. L.

0.1495 | 0.040% | 00388 | 16| 0.0379 | 25 0.990 | 0.954
C0.199 | 0.0520 | 0.0327 | 4+ 2| 0.0592 | o 7 0.969 | 0.923
0247 | 0.0678 | 00675 | 4 3| 0.0074 | 44 0.939 | 0.888
0.200 0.0834 | 0.0862 | — 8| 0.0844 | —10 0.902 | 0.849
0.3435 | 0.1019 | 0.1022 | — 3| 0.1026 | — 7 0.862 | 0.811
0301 | 04219 | 04222 | — 3| 04926 | —7 | o8 | 0.773
0.437 0.1420 | 01434 | — 5| 01437 | — 8 0.782 | 0.736
0.4825 | 01660 | 0.1605 | — 5| 0.1664 | — 4 0.744 | '0.702
05265 | 01916 | 01906 | 10 | 0.1002 | 14 0.709 | 0.671

has been made by Trouron?) al the suggestion of Frrz Grranp, and
in which it was tried to observe the existence of a sudden impulse
acting on ‘a condenser at the moment of charging or discharging;
for this purpose the condenser was suspended by a torsion-balance,
with its plates parallel to the Earth’s motion. For forming an
“estimate of the effect that may be expected, it will suffice to consider
a condenser with aether as dielectricum. Now, if the apparatus is
charged, there will be (§ 1) an electromagnetic momentum
- 2 U

¢

‘@ == .

(Terms of tlie third and: higher orders are here neglected). - This
momenhnn heing  produced at the moment of charging, and dis-
appealmo at thcut of (hbchfu'gjm the condenser must experience in
the first case an impulse and in the second an impulse - &.

However Trouron has not been able to observe these jerks.

-1 believe it may be shown (though his caleulations have led him
to a different conclusion) that the sensibility of the apparatus was
far from sufficient for the object Trouron had in view. .

1»ep1esentm , as before, by 7 the encrgy of the (:hcug,ed condenser

Y) Trourown, Dublin Roy Soc. Trans. (2) 7 (1902), p. 37‘) (This paper may also
be found in The scientific wmtmgs of itz (iEraLp, edited by Laruor, Dublin and
London 1902, p. 557).
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in the state of rest, and by U+ U’ the energy in the state of motion,
we have by the formulae of this paper, up to the terms of the
second order,

2wt

U’ = "—T U,

4]
-an  expression, agreeing in order of magnitude with the value used
by Trouron for estimating the effect.

i

The intensity of the sudden jerk or impulse will therefore be — .
w

- Now, supposing the apparatus to be initially at rest, we may
compare the deflexion e, produced by this impulse, to the deflexion
« which may be given to the torsion-balance by means of a constant
~couple A, acting during half the vibration time. We may also
consider the case in which -a swinging motion has already been set
up; then the impulse, applied at the moment in which the apparatus
passes  through the position of equilibrium, will alter the amplitude
by a certain amount § and a similar effect @' may be caused by
letting the couple A act during the swing from one extreme position
to the other. Let 7' be the period of swinging and / the distance
from the condenser to the thread of the torsion-balance. Then it is
~easily found that

o B8 a Ul

_ o« T KTw
According to TrouroN's siatements 7' amounted to one or two
ergs, and the smallest couple by which a sensible deflexion could be
produced was estimated at 7.5 C. G. S.-units.  If we substitute this
value for A and take into account that the velocity of the Barth’s
motion is 3 X 10" ¢.M. per sec., we immediately see that (39) must
have been a very small fraction. ' '

C e e e (89)

Mathematics. — “Observation on the paper communicated on
Lebp. 2T 1904 by Mre. Brovwer: ”On a decomposition of the
continuous motion about o point ) of S, into two continuous
motins about () of Sy's.” By Dr. E. Jannks., (Communicated
by Prof. D. J. Korrrweds.)

The above mentioned paper is connected with investigations of
Frrp. Casrary and with works published by me in the years
1896---1901. Mr. Brouwrr not referring to these, T take the liberty
to remark the following: Problems of the theory of the thetafunc-
tions on one hand and of mechanics on the other hand have led





